Ca(2+) spark sites in smooth muscle cells are numerous and differ in number of ryanodine receptors, large-conductance K(+) channels, and coupling ratio between them.
نویسندگان
چکیده
Ca(2+) sparks are highly localized Ca(2+) transients caused by Ca(2+) release from sarcoplasmic reticulum through ryanodine receptors (RyR). In smooth muscle, Ca(2+) sparks activate nearby large-conductance, Ca(2+)-sensitive K(+) (BK) channels to generate spontaneous transient outward currents (STOC). The properties of individual sites that give rise to Ca(2+) sparks have not been examined systematically. We have characterized individual sites in amphibian gastric smooth muscle cells with simultaneous high-speed imaging of Ca(2+) sparks using wide-field digital microscopy and patch-clamp recording of STOC in whole cell mode. We used a signal mass approach to measure the total Ca(2+) released at a site and to estimate the Ca(2+) current flowing through RyR [I(Ca(spark))]. The variance between spark sites was significantly greater than the intrasite variance for the following parameters: Ca(2+) signal mass, I(Ca(spark)), STOC amplitude, and 5-ms isochronic STOC amplitude. Sites that failed to generate STOC did so consistently, while those at the remaining sites generated STOC without failure, allowing the sites to be divided into STOC-generating and STOC-less sites. We also determined the average number of spark sites, which was 42/cell at a minimum and more likely on the order of at least 400/cell. We conclude that 1) spark sites differ in the number of RyR, BK channels, and coupling ratio of RyR-BK channels, and 2) there are numerous Ca(2+) spark-generating sites in smooth muscle cells. The implications of these findings for the organization of the spark microdomain are explored.
منابع مشابه
Genetic ablation of caveolin-1 modifies Ca2+ spark coupling in murine arterial smooth muscle cells.
L-type, voltage-dependent calcium (Ca(2+)) channels, ryanodine-sensitive Ca(2+) release (RyR) channels, and large-conductance Ca(2+)-activated potassium (K(Ca)) channels comprise a functional unit that regulates smooth muscle contractility. Here, we investigated whether genetic ablation of caveolin-1 (cav-1), a caveolae protein, alters Ca(2+) spark to K(Ca) channel coupling and Ca(2+) spark reg...
متن کاملVoltage dependence of the coupling of Ca sparks to BKCa channels in urinary bladder smooth muscle
Herrera, Gerald M., Thomas J. Heppner, and Mark T. Nelson. Voltage dependence of the coupling of Ca sparks to BKCa channels in urinary bladder smooth muscle. Am J Physiol Cell Physiol 280: C481–C490, 2001.—Large-conductance Cadependent K (BKCa) channels play a critical role in regulating urinary bladder smooth muscle (UBSM) excitability and contractility. Measurements of BKCa currents and intra...
متن کاملVoltage dependence of the coupling of Ca(2+) sparks to BK(Ca) channels in urinary bladder smooth muscle.
Large-conductance Ca(2+)-dependent K(+) (BK(Ca)) channels play a critical role in regulating urinary bladder smooth muscle (UBSM) excitability and contractility. Measurements of BK(Ca) currents and intracellular Ca(2+) revealed that BK(Ca) currents are activated by Ca(2+) release events (Ca(2+) sparks) from ryanodine receptors (RyRs) in the sarcoplasmic reticulum. The goals of this project were...
متن کاملSpontaneous transient outward currents arise from microdomains where BK channels are exposed to a mean Ca(2+) concentration on the order of 10 microM during a Ca(2+) spark
Ca 2 sparks are small, localized cytosolic Ca 2 transients due to Ca 2 release from sarcoplasmic reticulum through ryanodine receptors. In smooth muscle, Ca 2 sparks activate large conductance Ca 2 -activated K channels (BK channels) in the spark microdomain, thus generating spontaneous transient outward currents (STOCs). The purpose of the present study is to determine experimentally the level...
متن کاملGenetic ablation of caveolin-1 modifies Ca spark coupling in murine arterial smooth muscle cells
Cheng, Xiaoyang, and Jonathan H. Jaggar. Genetic ablation of caveolin-1 modifies Ca spark coupling in murine arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 290: H2309–H2319, 2006. First published January 20, 2006; doi:10.1152/ajpheart.01226.2005.—Ltype, voltage-dependent calcium (Ca ) channels, ryanodine-sensitive Ca release (RyR) channels, and large-conductance Ca activated pota...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 287 6 شماره
صفحات -
تاریخ انتشار 2004